Home Delivery

AgriNews gives readers information they can't get elsewhere to help them make better farming decisions. The Illinois AgriNews and Indiana AgriNews editorial staff is in the field each week, covering topics that affect local farm families and their businesses.


Read AgriNews on your computer or download and take it with you. Get full access on your desktop, tablet and mobile devices every day.

Email Newsletter

Delivered to your inbox each evening, AgriNews shares the top agricultural news stories of the day. And it's free.
Farm Equipment

Non-chemical weed-control strategies: Harrington Seed Destructor kills nearly 100% weed seeds in lab study

A new University of Illinois study tested the weed-seed-killing power of the Harrington Seed Destructor, an impact mill used to reduce the weed seed bank at harvest.
A new University of Illinois study tested the weed-seed-killing power of the Harrington Seed Destructor, an impact mill used to reduce the weed seed bank at harvest.

URBANA, Ill. — In the battle against herbicide-resistant weeds, farmers are increasingly eager to add non-chemical control methods to their management toolbox.

Impact mills, which destroy weed seeds picked up by a combine, have been shown to kill 70% to 99% of weed seeds in soybeans, wheat and other small-statured cropping systems.

And a recent Weed Science study from the University of Illinois shows even seeds that appear unscathed after impact milling don’t germinate the following spring.

“Harvest weed seed control is really becoming an accepted part of integrated weed management,” said Adam Davis, study co-author and head of the Department of Crop Sciences at U of I. “Producers are excited about it.”

In the current study, Davis and his collaborators wanted to see how the Harrington Seed Destructor, an impact mill developed and widely used in Australia, handled common U.S. agronomic weeds without the complications of real field conditions.

The researchers collected seeds from 10 common weed species in soybean fields in the U.S. Midwest and Mid-Atlantic regions. They fed the seeds through a stationary HSD and then tried germinating them in a greenhouse and in the field following a typical Illinois winter.

Davis said zero to 15% of the seeds appeared to be undamaged immediately after milling, regardless of species and seed size. But when the undamaged seeds were buried in the field and left through the winter, fewer than 10% survived.

“Basically, almost zero survived overall,” Davis said.

Based on his previous research, Davis said he thinks microscopic abrasions from the impact mill damage the seed coat enough for microbes to enter and destroy the embryonic weed inside.

Can producers expect nearly zero weed seed survival when using the HSD or other impact mills in the field? Probably not.

Davis and his collaborators have been conducting U.S. field trials with the HSD for five years, and typically see a reduction in weed seed rain by 70% to 80%.

“The difference between its efficacy as a stationary device and its efficacy in the field is largely due to shattering of the weeds,” Davis explained.

“As the combine is going through, it’s shaking everything and causing a lot of seed dispersal. By looking at the HSD as a stationary device, we’re able to quantify the theoretical max.”

Whether impact mills kill 70% or 99% of weed seeds, non-chemical control strategies are important in slowing the evolution of herbicide resistance. However, over-reliance on any one strategy could select for additional problematic traits in weeds.

“If producers start using this device on a large scale, they will ultimately select for earlier shattering. It’s already been shown in Australia,” Davis said.

“That’s just the nature of weed and pest management in general. Really what you’re doing is managing evolution. In order for any tactic to be successful, you’ve got to change it up. You need to confuse them; add diversity in the time of year and life stages you’re targeting. We’re just proposing this as a new tactic that’s effective — not the only tactic.”

The article, “Fate of weed seeds after impact mill processing in Midwestern and mid-Atlantic United States,” was published in Weed Science.

Co-authors include Davis, Lovreet Shergill, Kreshnik Bejleri and Steven Mirsky. The research was supported by the U.S. Department of Agriculture’s Agricultural Research Service.

Loading more